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1. Revised E/R Model

● Weak entity set Edition added.

● Changed joins to joins_challenge and cardinality to many to

one and has additional attribute book_read.

● Admin table is deleted so the whole system is managed by

the librarian, so Librarian does not have is_verified.

● Recommend relation added.

● Rates relation renamed as review and has three additional

attributes (reply, comment, rating).

● Additional attributes (request_msg, approved) added and

type is removed from the requests relation.

● Progress table has additional attributes called page_number

,date and progress amount is deleted.

● Book_list table has additional attributes called book_count.

● Some attributes from the Book table are moved to the Edition

table.

● Changed mark_progress cardinality.

● post_commnet has one to many cardinality.

● Post table has a text attribute.

● Progress_comment to Progress cardinality changed to many

to 1

● friend_of relation has accepted attribute
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● progress to mark_progress cardinality changed from 1 to

total many

Figure 1: E/R Diagram

Above is the Entity Relationship Diagram of our project. It also can be seen as full

size from our web page which can be found in section 4.
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2. Table Schemas

2.1. User

Relational Model

user(user_id, user_name, email, name, biography, password)

Primary and Foreign Keys

Primary key(s): user_id

Foreign key(s): ----

Table Declaration:

CREATE TABLE User(

user_id INT PRIMARY KEY AUTO_INCREMENT,

user_name VARCHAR(32) NOT NULL UNIQUE,

email VARCHAR(32) NOT NULL UNIQUE,

name VARCHAR(32) NOT NULL,

biography VARCHAR(32) DEFAULT NULL,

password VARCHAR(32) NOT NULL

);

2.2. friend_of

Relational Model

friend_of(user_id, friend_id, accepted)

Primary and Foreign Keys

Primary key(s): user_id, friend_id

Foreign key(s):

user_id - Foreign key to User table

friend_id - Foreign key to User table
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Table Declaration:

CREATE TABLE friend_of(

user_id INT PRIMARY KEY,

FOREIGN KEY(user_id) REFERENCES User(user_id),

ON DELETE CASCADE,

friend_id INT PRIMARY KEY,

FOREIGN KEY(friend_id) REFERENCES User(user_id)

ON DELETE CASCADE,

accepted BIT DEFAULT 0

);

2.3. Librarian

Relational Model

librarian(user_id)

Primary and Foreign Keys

Primary key(s): user_id

Foreign key(s):

user_id - Foreign key to User table

Table Declaration:

CREATE TABLE Librarian(

user_id INT PRIMARY KEY,

FOREIGN KEY(user_id) REFERENCES User(user_id),

ON DELETE CASCADE

);
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2.4. Author

Relational Model

author(user_id, is_verified, verifier_id)

Primary and Foreign Keys

Primary key(s): user_id

Foreign key(s):

user_id - Foreign key to User table

verifier_id - Foreign key to Librarian table

Table Declaration:

CREATE TABLE Author(

user_id INT PRIMARY KEY,

FOREIGN KEY(user_id) REFERENCES User(user_id),

ON DELETE CASCADE,

is_verified BIT DEFAULT 0,

verfier_id INT NOT NULL

);

2.5. publishes

Relational Model

publishes(author_id, book_id)

Primary and Foreign Keys

Primary key(s): author_id, book_id

Foreign key(s):

author_id - Foreign key to Author table (user_id)

book_id - Foreign key to Book table
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Table Declaration:

CREATE TABLE publishes(

author_id INT PRIMARY KEY,

FOREIGN KEY(author_id) REFERENCES Author(user_id),

ON DELETE CASCADE,

book_id INT PRIMARY KEY,

FOREIGN KEY(book_id) REFERENCES Book(book_id)

ON DELETE CASCADE,

);

2.6. Book

Relational Model

book(book_id, title, description, genre, year, img_url)

Primary and Foreign Keys

Primary key(s): book_id

Foreign key(s): ----

Table Declaration:

CREATE TABLE Book(

book_id INT PRIMARY KEY AUTO_INCREMENT,

title VARCHAR(32) NOT NULL,

description VARCHAR(256) NOT NULL,

genre VARCHAR(32) NOT NULL,

year INT NOT NULL,

img_url VARCHAR(64) DEFAULT NULL

);
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2.7. Edition

Relational Model

edition(book_id, ed_id, name, format, translator, language,

publish_date, page, author_name)

Primary and Foreign Keys

Primary key(s): book_id, ed_id

Foreign key(s):

book_id - Foreign key to Book table

Table Declaration:

CREATE TABLE Edition(

book_id INT PRIMARY KEY,

FOREIGN KEY(book_id) REFERENCES Book(book_id),

ON DELETE CASCADE,

ed_id INT PRIMARY KEY AUTO_INCREMENT,

name VARCHAR(32) NOT NULL,

format VARCHAR(32) NOT NULL,

translator VARCHAR(32) DEFAULT NULL,

language VARCHAR(32) NOT NULL,

publish_date DATE DEFAULT CURRENT_TIMESTAMP,

page INT NOT NULL,

author_name VARCHAR(32) NOT NULL

);

9



2.8. review

Relational Model

review(user_id, book_id, rating, comment, reply)

Primary and Foreign Keys

Primary key(s): user_id, book_id

Foreign key(s):

user_id - Foreign key to User table

book_id - Foreign key to Book table

Table Declaration:

CREATE TABLE review(

user_id INT PRIMARY KEY,

FOREIGN KEY(user_id) REFERENCES User(user_id),

ON DELETE CASCADE,

book_id INT PRIMARY KEY

FOREIGN KEY(book_id ) REFERENCES Book(book_id ),

ON DELETE CASCADE,

rating INT NOT NULL,

comment VARCHAR(256) NOT NULL,

reply VARCHAR(256) DEFAULT NULL

);

2.9. Series

Relational Model

series(ser_id, name)

Primary and Foreign Keys
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Primary key(s): ser_id

Foreign key(s): ----

Table Declaration:

CREATE TABLE Series(

ser_id INT PRIMARY KEY AUTO_INCREMENT,

name VARCHAR(32) NOT NULL

);

2.10. series_of

Relational Model

series_of(book_id, ser_id)

Primary and Foreign Keys

Primary key(s): book_id

Foreign key(s):

series_id - Foreign key to Series table

book_id - Foreign key to Book table

Table Declaration:

CREATE TABLE series_of(

book_id INT PRIMARY KEY,

FOREIGN KEY(book_id ) REFERENCES Book(book_id ),

ON DELETE CASCADE,

FOREIGN KEY(ser_id ) REFERENCES Book(ser_id ),

ON DELETE CASCADE

);
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2.11. Progress

Relational Model

progress(pro_id, page_number, date)

Primary and Foreign Keys

Primary key(s): pro_id

Foreign key(s): ----

Table Declaration:

CREATE TABLE Progress(

pro_id INT PRIMARY KEY AUTO_INCREMENT,

page_number INT NOT NULL,

date DATETIME DEFAULT CURRENT_TIMESTAMP

);

2.12. progress_comment

Relational Model

progress_comment(cid, pro_id)

Primary and Foreign Keys

Primary key(s): cid

Foreign key(s):

pro_id - Foreign key to Progress table

cid - Foreign key to Comment table

Table Declaration:

CREATE TABLE progress_comment(

cid INT PRIMARY KEY,

FOREIGN KEY(cid ) REFERENCES Comment(cid ),
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ON DELETE CASCADE,

FOREIGN KEY(pro_id ) REFERENCES Progress(pro_id ),

ON DELETE CASCADE

);

2.13. mark_progress

Relational Model

mark_progress(user_id, book_id, pro_id)

Primary and Foreign Keys

Primary key(s): user_id, book_id, pro_id

Foreign key(s):

user_id - Foreign key to User table

book_id - Foreign key to Book table

pro_id - Foreign key to Progress table

Table Declaration:

CREATE TABLE mark_progress(

user_id INT PRIMARY KEY,

FOREIGN KEY(user_id) REFERENCES User(user_id),

ON DELETE CASCADE,

book_id INT PRIMARY KEY,

FOREIGN KEY(book_id) REFERENCES Book(book_id),

ON DELETE CASCADE,

pro_id INT PRIMARY KEY,

FOREIGN KEY(pro_id) REFERENCES Progress(pro_id),

ON DELETE CASCADE

);
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2.14. Comment

Relational Model

comment(cid, text, date, user_id)

Primary and Foreign Keys

Primary key(s): cid

Foreign key(s):

user_id- Foreign key to User table

Table Declaration:

CREATE TABLE Comment(

cid INT PRIMARY KEY AUTO_INCREMENT,

text VARCHAR(256) NOT NULL,

date DATE DEFAULT CURRENT_TIMESTAMP,

FOREIGN KEY(user_id) REFERENCES User(user_id),

ON DELETE CASCADE

);

2.15. recommend

Relational Model

recommend(user_id, friend_id, book_id)

Primary and Foreign Keys

Primary key(s): user_id, friend_id, book_id

Foreign key(s):

user_id - Foreign key to User table

friend_id - Foreign key to User table (user_id)

book_id - Foreign key to Book table
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Table Declaration:

CREATE TABLE recommend(

user_id INT PRIMARY KEY,

FOREIGN KEY(user_id) REFERENCES User(user_id),

ON DELETE CASCADE,

book_id INT PRIMARY KEY,

FOREIGN KEY(friend_id) REFERENCES User(user_id),

ON DELETE CASCADE,

friend_id INT PRIMARY KEY,

FOREIGN KEY(book_id) REFERENCES Book(book_id),

ON DELETE CASCADE

);

2.16. joins_challenge

Relational Model

joins_challenge(chal_id, user_id, book_read)

Primary and Foreign Keys

Primary key(s): chal_id, user_id

Foreign key(s):

user_id - Foreign key to User table

chal_id - Foreign key to Challenge table

Table Declaration:

CREATE TABLE joins_challenge(

user_id INT PRIMARY KEY,

FOREIGN KEY(user_id) REFERENCES User(user_id),
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ON DELETE CASCADE,

chal_id INT PRIMARY KEY,

FOREIGN KEY(chal_id) REFERENCES Challenge(chal_id),

ON DELETE CASCADE,

book_read INT DEFAULT 0

);

2.17. Challenge

Relational Model

challenge(chal_id, challenge_name, due_date, bl_id, librarian_id)

Primary and Foreign Keys

Primary key(s): chal_id

Foreign key(s):

bl_id - Foreign key to Book_list table

librarian_id - Foreign key to Librarian table (user_id)

Table Declaration:

CREATE TABLE Challenge(

chal_id INT PRIMARY KEY AUTO_INCREMENT,

bl_id INT PRIMARY KEY,

FOREIGN KEY(bl_id) REFERENCES Book_list(bl_id),

ON DELETE CASCADE,

challenge_name VARCHAR(32) NOT NULL,

due_date DATE NOT NULL,

FOREIGN KEY(librarian_id) REFERENCES Librarian(user_id),

ON DELETE CASCADE

);
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2.18. requests

Relational Model

requests(book_id, user_id, librarian_id, request_msg, approved)

Primary and Foreign Keys

Primary key(s): book_id, user_id, librarian_id

Foreign key(s):

user_id - Foreign key to User table

book_id - Foreign key to Book table

librarian_id - Foreign key to Librarian table (user_id)

Table Declaration:

CREATE TABLE requests(

book_id INT PRIMARY KEY,

FOREIGN KEY(book_id) REFERENCES Book(book_id),

ON DELETE CASCADE,

user_id INT PRIMARY KEY,

FOREIGN KEY(user_id) REFERENCES User(user_id),

ON DELETE CASCADE,

librarian_id INT PRIMARY KEY,

FOREIGN KEY(librarian_id) REFERENCES Librarian(user_id),

ON DELETE CASCADE,

request_msg VARCHAR(256) NOT NULL,

approved BIT DEFAULT 0

);
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2.19. has_books

Relational Model

has_books(book_id, bl_id)

Primary and Foreign Keys

Primary key(s): book_id, bl_id

Foreign key(s):

book_id - Foreign key to Book table

bl_id - Foreign key to Book_list table

Table Declaration:

CREATE TABLE has_books(

book_id INT PRIMARY KEY,

FOREIGN KEY(book_id) REFERENCES Book(book_id),

bl_id INT PRIMARY KEY,

FOREIGN KEY(bl_id) REFERENCES Book_list(bl_id)

);

2.20. Book_list

Relational Model

Book_list(bl_id, name, book_count)

Primary and Foreign Keys

Primary key(s): bl_id

Foreign key(s): ----

Table Declaration:

CREATE TABLE Book_list(

bl_id INT PRIMARY KEY AUTO_INCREMENT,
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name VARCHAR(32) NOT NULL,

book_count INT DEFAULT 0

);

2.21. Thread

Relational Model

thread(tid, name, category)

Primary and Foreign Keys

Primary key(s): tid

Foreign key(s): ----

Table Declaration:

CREATE TABLE Thread(

tid INT PRIMARY KEY AUTO_INCREMENT,

name VARCHAR(32) NOT NULL,

category  VARCHAR(32) NOT NULL

);

2.22. follows

Relational Model

follows(user_id, tid)

Primary and Foreign Keys

Primary key(s): user_id, tid

Foreign key(s):

user_id - Foreign key to User table

tid - Foreign key to Thread table
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Table Declaration:

CREATE TABLE follows(

user_id INT PRIMARY KEY,

FOREIGN KEY(user_id) REFERENCES User(user_id),

ON DELETE CASCADE,

tid INT PRIMARY KEY,

FOREIGN KEY(tid) REFERENCES Thread(tid),

ON DELETE CASCADE

);

2.23. Post

Relational Model

post(pid, like, text, date, user_id, t_id)

Primary and Foreign Keys

Primary key(s): pid

Foreign key(s):

user_id - Foreign key to User table

t_id - Foreign key to Thread table

Table Declaration:

CREATE TABLE Post(

pid INT PRIMARY KEY AUTO_INCREMENT,

like INT DEFAULT 0,

text VARCHAR(256) DEFAULT NULL,

date DATETIME DEFAULT CURRENT_TIMESTAMP,

FOREIGN KEY(user_id) REFERENCES User(user_id),
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ON DELETE CASCADE,

FOREIGN KEY(tid) REFERENCES Thread(tid),

ON DELETE CASCADE

);

2.24. post_comment

Relational Model

post_comment(cid, pid)

Primary and Foreign Keys

Primary key(s): cid

Foreign key(s):

pid - Foreign key to post table

cid - Foreign key to comment table

Table Declaration:

CREATE TABLE post_comment(

cid INT PRIMARY KEY,

FOREIGN KEY(cid) REFERENCES Comment(cid),

ON DELETE CASCADE,

FOREIGN KEY(pid) REFERENCES Post(pid),

ON DELETE CASCADE

);
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3. User Interface Design and SQL Statements

3.1. Home Page

figure 1: Home page

3.2. Login Page

figure 2: Login page

User Inputs: @email, @password

SQL Statements:
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On Login Button:

SELECT user_id

FROM User

WHERE @password = password and @email = email

3.3. Create Account Page

figure 3: Sign up page

User Inputs: @email, @password, @username, @name,

@biography

SQL Statements:

On Register Button:

INSERT INTO User(username, email, name, biography,

password)

VALUES (@username, @email, @name, @biography,

@password)
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3.4. My Books Page

figure 4: My Books page

Session Inputs: @user_id, @friend_id, @book_id

SQL Statements:

On Initial Listing:

SELECT title, description, page_number, rating

FROM mark_progress natural join Book natural join

Progress natural join review

WHERE @user_id = user_id

On recommend a book button:

INSERT INTO recommend(user_id, friend_id, book_id)

VALUES(@user_id, @friend_id, @book_id)

24



3.5. Book Search

figure 5: Browse page

figure 6: Book details page

User Inputs: @title, @pdate, @genre, @author,

@edition_name

Session Inputs: @user_id, @pro_id, @currentDate,

@book_id, @ed_id
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SQL Statements:

On searching:

SELECT title, description, year, page_number, page, rating

FROM Book natural join Edition natural join review

WHERE title like %@title% or name like

%@edition_name% or publish_date = @pdate = or genre

= @genre or @author = author_name

On tracking:

SELECT title, description, img_url, page_number, date,

rating

FROM Book natural join mark_progress natural join

Progress natural join review natural join Edition

WHERE book_id = @book_id and ed_id = @ed_id
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3.6. Create List

figure 7: Create book list page

User Inputs: @name

SQL Statements:

On Create List Button:

INSERT INTO Book_list (name)

VALUES (@name)
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3.7. Add Book to the List

figure 8: Add book to book list

Session Inputs: @user_id, @book_id, @bl_id

SQL Statements:

Add books to the list:

INSERT INTO has_books(book_id, bl_id)

VALUES (@book_id, @bl_id)

28



3.8. Add Friends

figure 9: My friends page

figure 10: Search for friends page
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figure 11: Searching for bulut

figure 12: Profile of a friend

Session Inputs: @user_id, @friend_id

SQL Statements:

On Add Friend Button:

INSERT INTO friend_of(user_id, friend_id, 0)

VALUES (@user_id, @friend_id, @accepted)
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On Accept Request Button:

UPDATE friend_of

SET accepted = 1

WHERE user_id = @user_id AND @friend_id = friend_id

3.9. Challenges Page

figure 13: Challenges page

User Inputs: @title, @pdate, @genre, @author, @edition_name

SQL Statements:

Listing items:

SELECT challenge_name, due_date, type, book_count

FROM Challenge natural join creates_challenge natural

join Book_list

Joining a challenge:
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INSERT INTO joins_challenge(user_id, chal_id,

book_read)

VALUES(@user_id, @chal_id, 0)

3.10. Forum

figure 14: Forum page (Threads)

figure 15: Posts for Science Fiction thread
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User Inputs: @text

Session Inputs: @pid, @currentDate, @tid, @cid, @user_id

SQL Statements:

Listing threads:

SELECT name, category

FROM Thread

Listing followed threads:

SELECT name, category

FROM Thread natural join follows

Listing posts:

SELECT username, name, text, date, like

FROM Post natural join posts natural join User

WHERE tid = @tid

Listing post’s comments:

SELECT username, name, text, date

FROM Comment natural join writes natural join User

WHERE @pid = Comment.pid

Posting a comment:

INSERT INTO Comment(text, date, user_id)
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VALUES(@text, @currentDate, @user_id)

INSERT INTO post_comment(pid, cid)

VALUES(@pid, @cid)

Posting a post:

INSERT INTO Post(like, text, date, user_id, tid)

VALUES(0, @text, @currentDate, @user_id, @tid)

Liking a post:

UPDATE Post

SET like = like + 1

WHERE @pid = pid

Remove a like from post:

UPDATE Post

SET like = like - 1

WHERE @pid = pid

4. Project Web Page

● https://cs353group11.github.io/
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